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sSynaptic plasticity
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TABLE 13.1

Different Forms of Synaptic Plasticity

Duration

Phenomenon Locus of induction
- Short-term enhancement

Paired-pulse facilitation (PPF) 100 msec Pre
Augmentation _ 10 sec Pre
Posttetanic potentiation (PTP I min Pre
Long-term enhancement

Short-term potentiation (STP) 15 min Post
Long-term potentiation (LTP) >30 min Pre and post
Depression

Paired-pulse depression (PPD) 100 msec Pre
Depletion - 10 sec Pre
Long-term depression _{LTD) >30 min Pre and post

Synaptic plasticity occurs across many time scales. This table lists some of the better studied forms of plasticity together with a
very approximate estimate of their associated decay constants, and whether the conditions required for induction depend on pre- or
postsynaptic activity, or both. This distinction is crucial from a computational point of view, since Hebbian learning rules require
a postsynaptic locus for the induction of plasticity. Note that for LTP and LTD, we are referring specifically to the form found at
the Schaffer collateral input to neurons in the CA1 region of the rodent hippocampus; other forms have different requirements.

Koch, 2004



sSynaptic plasticity

“When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one of
the cells firing B, is increased” (Hebb, 1949).

Cells that fire together wire together

Cells out of sync lose their link

=PrL



Long-term potentiation (LTP)

Before conditioning

After conditioning
Cont

« ‘Synaptic plasticity’ (Konorski, 1948) A
» ‘Hebbian’ plasticity (Hebb, 1949)

» Post-tetanic potentiation (PTP)

» Higher stimulation (Lemo 1966)
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Long-term depression (LTD)

* Long-term depression (Dunwiddie and
Lynch, 1978)

» Durable LTD (Dudek and Bear, 1992)

» Graded bidirectional synaptic
modifiability (Dudek and Bear, 1993)
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« High-frequency stimulation (e.g. 100Hz for 1s) -> LTP

« Prolonged low-frequency stimulation (e.g. 900 stimuli at 1Hz) -> LTD

« Extracellular presynaptic stimulation at different frequencies

=PrL

Change in EPSP slope (%)
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Clopath (2015)
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Experimental protocols

Low-frequency stimulation + postsynaptic depolarization
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Spike-time dependent plasticity (STDP)
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Experimental protocols A

« Plasticity has similar mechanisms /n vivo and
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Neuron types
by Santiago Ramoén y Cajal (1887)

Different Types of Neurons. A. Purkinje cell B. Granule cell C. Motor
neuron D. Tripolar neuron E. Pyramidal Cell F. Chandelier cell G. Spindle
neuron H. Stellate cell (Credit: Ferris Jabr; based on reconstructions and

drawings by Cajal)

- P F L Spruston, 2008
= "

40 pA



=PrL

fEPSP slope (%)

(7]

200
150
100

62
o

T T T T ™

0 10 20 30 40 50
Time (min)

T T T T T ™

0 10 20 30 40 50
Time (min)

Citri and Malenka, 2008

14



LTP

Induction

* |t depends on NMDAR, increase in Ca?+ NMDAR  AMPAR

» Calcium/calmodulin (CaM)-dependent protein
LTP

kinase Il (CaMKIl) undergoes

VV — Y

autophosphorylation Racycind

Expression

NMDAR AMPAR

« Early phase or E-LTP (30 — 60 min) " L " e U,

* Recycling endosomes contain AMPARSs are

NMDAR AMPAR

brs Calcineurin
a“=> ppq

mobilized via a process that requires the

GTP-binding protein Rab11a o
Citri and Malenka, 2008

« New AMPARSs are added in the postsynaptic

E P #fity (PSD)



LTP

Maintenance

« Late phase or L-LTP (> 1 -2 hrs)

» Local dendritic synthesis (AMPAR,
CAMKII...)

« Transcription on the nucleus

=PrL

NMDAR

NMDAR

AMPAR

AMPAR

Citri and Malenka, 2008
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LTD

Induction
* It depends on NMDAR, modest increase in NMDAR  AMPAR
Ca2+

» Calcium/calmodulin-dependent phosphatase

calcineurin, protein phosphatase 1 (PP1)...

Expression

NMDAR AMPAR

» Activity-dependent endocytosis of synaptic
AMPARs

Citri and Malenka, 2008
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Presynaptic LTP

Prototype: plasticity at Mossy fibers (DG-CA3)

Induction

* increase in Ca?* in presynaptic terminal, voltage-dependent calcium channels (VDCC)
«  Calcium/calmodulin-dependent adenylyl cyclase

* increase in presynaptic cAMP and activation of Protein kinase A (PKA)

Expression

. Enhancement in transmitter release

=PrL
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Endocannabinoid-mediated LTD

* Endogenous cannabinoids

(neuromodulators)

* Retrograde messengers

Presynaptic
terminal

OOOOOS B —— CB1R

«  Strong depolarization and/or activation of G-
protein-coupled receptors (e.g., mGluRs and

muscarinic receptors)
« Activation of presynaptic CB1 receptors

. Inhibit transmitter release

Postsynaptic
cell

Citri and Malenka, 2008
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« An action potential (generated in soma or

AlIS) propagates backwards in the dendrites

* lon channel composition affects how reliable
the BPAP is transmitted

 BPAP can release the Mg?+-block necessary

to induce an NMDAR-mediated plasticity

=PrL

in vitro
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Spruston, 2008
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Na+* spikes. Brief events

Ca?+ spikes. Larger and broader events
NMDA spikes. Due to release of Mg2+. They
remain where glutamate release occurs
Backpropagation-activated Ca2+ spike (BAC
spike). Synaptic stimulation + BPAP (figure)
Dendritically initiated spikes are required for
LTP or LTD induction in response to strong

synaptic stimulation or during pairing of

EPSPs with postsynaptic bursts

=PrL
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Summary 1

« Long-term plasticity can be induced by several protocols
» There are several forms of plasticity in the brain

« Long-term plasticity includes phenomena at different spatial and temporal

scales
« Hippocampal plasticity is the prototype of many forms of plasticity
« Plasticity has similar mechanisms /n vivo and in vitro
» Evidence for long-term plasticity in humans

» Dendrites are highly non linear

=PrL
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« There are a multitude of models

« Each model can reproduce a subset of experiments and is suitable to

mimic certain forms of plasticity

« Models different from the variable that decides how the weights are

updated

« Historically, the starting point is the Hebbian rule

=PrL
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Rate based models

Spike timing based models
Voltage based

Calcium based

Subcellular models

=PrL
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Aw; = ax;y,
a is learning rate. a=1 in the simplest expression of the Hebbian rule. In many
models, a << 1 to guarantee a small change over time
A simple rule as above can lead to uncontrolled growth of weights.

A more general expression is:

dW;
7 = f(xi, y, Wi, other),

The rate of pre and postsynaptic firing measured over some time period, determines the sign and

magnitude of synaptic plasticity

=PrL
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Rate hased models: Linsker (1986)

dw;

= nxi —x0)(y — ¥p)>

x0 and y0 are the average activity
The weights can be augmented and reduced

Covariance of the two neurons

=PrL
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Rate based models: 0ja’s rule (1982)

The squared output y? guarantees that the larger the output of the neuron becomes, the stronger is

this balancing effect.

=PrL

Aw; = a(x;y —

Yy Wi

),

Forgetting
term

28



Rate based models: BCM rule (Bienenstock, Cooper, and Munro 1982)

dw: —ew; uniform weight decay
l
dt = Yy —Ou)x; — ew; 6,y modification threshold
E[] average over all input patterns
o = E’L(Yy,)]

p exponent

Yy, constant

B\, depends on the history of the cell

Lower rates of y leads to a decrease of w, higher rates to an increase of w

=PrL .



a LTP pair model

Q pre
w\ ‘

O post
iw — +ApTp (W )Y(l‘)x’ (l‘)

dt
Y(©) = > 0 — 1)
50) = (1) + X, ).

T —Xi(t) =

+ (D)
Xi(t) = 22 0@ — 17)

xi could represent glutamate bound to postsynaptic

E P F L receptors or the number of NMDA receptors activated

b LTD pair model

.. 7 irace post
d _ _ _
A —ALTD (W,~ )Xi(t)y(t),
4
d
—v(t) = Y(t
30 = —3(0) + Y(0),

y is an abstract variable which could reflect
Ca, endocannabinoids, BPAP

Clopath (2015)
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Voltage hased models: Clopath et al., 2010

pre post

d _ _ .
—wj = AppX;(u—0,), (1, —0_), if wj <wpay

dt

Here, A | is a free amplitude parameter fitted to the data and ., (¢) is another
low-pass-filtered version of u(t) that is similar to z_(¢) but has a shorter time
constant T, of around 10 ms. Thus, positive weight changes can occur if the
momentary voltage u(t) surpasses a threshold 6, and, at the same time, the
average value 7, (t) is above 6 .

( )+ indicates rectification, that is, any value <0 does not lead to a change

d
Ty EE,-(t) = —x;(t)+ X;(t)

d
— W
dt

— = _ . e -80 :—eo :-40 20 0
;] = ALTD(u)X,' (t)(u_ - 9_ )+ lf WI > Wmin Voltage (mV)

d

T_ d—u_(t) =—u_(t)+ u(t)

t
d -
E P F L % w; = —App (W) X; (- —0_), + Apppx;j(u—0,), (i, —6_), hard bounds Wmin S W;j S Wmax
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« The voltage based models can potentially integrate the non linearity of the

dendrites (e.g. BPAP, dendritic spikes)
* They are closer to the biophysics

« They are more general and can explain more experiments

=PrL
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Calcium hased models: Shouval et al., 2002

where W; represents the synaptic strength of synapse j, m is the
learning rate, and the calcium level at synapse j is denoted by
[Ca];. When the calcium level is below a lower threshold 6,4, no

modification occurs. If 6, < [Ca]; < 6,, Wj is depressed, and for
[Ca]; > 6,, the synaptic strength is potentiated (Fig. 14).

VVj = n(Q([Ca] i) — AW;), where \represents a decay constant.

s The learning rate n is inversely proportional to the learning time
I/Vj T TI([Ca ]j)(Q([Ca ]j) o I’V]) + constant 7. In Eq. 3, we set A = 1 without loss of generality.

=PrL .



Calcium hased models: Shouval et al., 2002

o (Calcium influx from NMDAR

The model can be expanded with voltage-dependent Ca2+ channels and

release from intercellular stores

Bidirectional synaptic plasticity

Pairing Presynaptic Stimulation with Postsynaptic Voltage Clamp

Varying the Rate of Presynaptic Stimulation

Varying Spike Timing (STDP)

=PrL



Subcellular models: Groupner and Brunel, 2007

« Two stable states of the CaMKIIl phosphorylation level exist at resting intracellular
calcium concentration, and high calcium transients can switch the system from the
weakly phosphorylated (DOWN) to the highly phosphorylated (UP) state of the CaMKI|
(similar to a LTP event). We show here that increased CaMKIl dephosphorylation
activity at intermediate Ca?* concentrations can lead to switching from the UP to the
DOWN state (similar to a LTD event).

« ltincludes model postsynaptic calcium and postsynaptic membrane potential

dynamics induced by presynaptic and postsynaptic spikes

« The model reproduces STDP and presynaptic stimulation protocols

=PrL
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Subcellular models: Groupner and Brunel, 2007
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Manninen et al. (2010) reviewed
117 models which are biophysical
and have postsynaptic

mechanisms

=PrL

Table 1] List of p ynaptic signal ducti dels published each year.
Year Models No.
1985 Lisman (1985) 1
1987 Gamble and Koch (1987) 1
1988 Lisman and Goldring (1988a,b) 2
1989 Lisman (1989) 1
1990 Holmes (1990), Holmes and Levy (1990), Kitajima and Hara (1990), Zador et al. (1990) 4
1993 De Schutter and Bower (1993), Migliore and Ayala (1993) 2
1994 Gold and Bear (1994), Kétter (1994), Michelson and Schulman (1994) 3
1995 Matsushita et al. (1995), Migliore et al. (1995), Schiegg et al. (1995) 3
1996 Dosemeci and Albers (1996), Fiala et al. (1996) 2
1997 Coomber (1997), Holmes and Levy (1997), Kitajima and Hara (1997), Migliore et al. (1997) 4
1998 Coomber (1998a,b), Markram et al. (1998), Murzina and Silkis (1998) 4
1999 Bhalla and lyengar (1999), Kétter and Schirok (1999), Kubota and Bower (1999), Migliore and Lansky (1999a,b), Volfovsky et al. (1999) 6
2000 Holmes (2000), Kitajima and Hara (2000), Li and Holmes (2000), Okamoto and Ichikawa (2000a,b), Zhabotinsky (2000) 6
2001 Castellani et al. (2001), Franks et al. (2001), Kubota and Bower (2001), Kuroda et al. (2001), Yang et al. (2001) 5
2002 Abarbanel et al. (2002), Bhalla (2002a,b), Hellgren Kotaleski and Blackwell (2002), Hellgren Kotaleski et al. (2002), Holthoff et al. (2002), n
Karmarkar and Buonomano (2002), Karmarkar et al. (2002), Saftenku (2002), Shouval et al. (2002a,b)
2003 Abarbanel et al. (2003), Bradshaw et al. (2003a), d/Alcantara et al. (2003), Dupont et al. (2003), Kikuchi et al. (2003) 5
2004 Ajay and Bhalla (2004), Holcman et al. (2004), Ichikawa (2004), Murzina (2004), Steuber and Willshaw (2004), Yeung et al. (2004) 6
2005 Abarbanel et al. (2005), Castellani et al. (2005), Doi et al. (2005), Hayer and Bhalla (2005), Hernjak et al. (2005), Miller et al. (2005), Naoki 10
et al. (2005), Rubin et al. (2005), Saudargiene et al. (2005), Shouval and Kalantzis (2005)
2006 Badoual et al. (2006), Lindskog et al. (2006), Miller and Wang (2006), Shah et al. (2006), Smolen et al. (2006), Zhabotinsky et al. (2006) 6
2007 Ajay and Bhalla (2007), Cai et al. (2007), Cornelisse et al. (2007), Delord et al. (2007), Gerkin et al. (2007), Graupner and Brunel (2007), 12
Ichikawa et al. (2007), Kubota et al. (2007), Ogasawara et al. (2007), Schmidt et al. (2007), Smolen (2007), Tanaka et al. (2007)
2008 Achard and De Schutter (2008), Brown et al. (2008), Canepari and Vogt (2008), Clopath et al. (2008), Helias et al. (2008), Keller et al. 14
(2008), Kubota and Kitajima (2008), Kubota et al. (2008), Pi and Lisman (2008), Santucci and Raghavachari (2008), Smolen et al. (2008),
Stefan et al. (2008), Urakubo et al. (2008), Yu et al. (2008)
2009 Aslam et al. (2009), Byrne et al. (2009), Castellani et al. (2009), Jain and Bhalla (2009), Kalantzis and Shouval (2009), Kitagawa et al. 9
(2009), Ogasawara and Kawato (2009), Schmidt and Eilers (2009), Smolen et al. (2009)
All 17

37



=PrL

Table 7 | Characteristics of models for signaling networks.

Type Model Inputs Compartments VGICs LGICs Other Mechanisms Pathways
LTP Ajay and Bhalla Glu, Jyuons 1 postsynaptic No No EGFR, CaM and other buffers AC, CaM, CaMKIF, CaN, Gq,
(2004) mGuR MAPK, MKR PKA, PKC, PKNME,
PLA,, PLC, PP1, Ras, SoS
LR Ajay and Bhalla Ca*, Al or Neuron with 1-324 Ca K, Kye AMPAR, No CaM buffer, 1-D diffusion of dl CaM, MAPK, PKC, PKM, PLA,,
Bect. (2007 AV J., compartments K., Kop Na* NMDAR molecules, PMCA pump, transport Ras
of allmolecules
TP Aslamet d. (20090  CaMCa, 1 postsynaptic No No No CaM buffer CaMKl|, CPEB1
LR Bhalaandlyengar Al orAV, Neuron with several Ce, K, Ky AMPAR, IPR,  EGFR, CaM bufer, PMCA purrp, Ca™ AC, CaM CaMKIl’, CaN, Gq,
Bect. (1999 EGF, Gu compartments Ky Kop Na™ NMDAR mGuR store MAPK, PKA, PKC, PLA,, PLC,
PP1,Ras, SoS
TR Bhalla (2002a) Al_orAV,, Neuron with 24 dendritic, Ca, Ky Ky AMPAR,IP,R, EGFR, CaMand other buffers, 1-D Ca* AC, CaM CaMKIP, CaN Gq,
Elect. EGF, Glu, 1 somatic, 4 spine-head, 3 Ko Ko Na* NMDAR mGIuR diffusion, PMCA and SERCA Gs, MAPK, PKA, PKC, PLA,,
hormone spine-neck pumps, Ca™ store PLC, PP1, Ras, SoS
LTP B halla (2002b) EGF, Glu, 1 entracellular, 1 No IP,R EGFR, CaM buffer, PMCA and SERCA AC, CaM, CaMKIPF, CaN, Gq,
homone,J,  intracellular, 1 store mGuR pumps, Ca™ store Gs MAPK, PKA, PKC, PLA,
PLC, PP1, Ras, SoS
LTP Kikuchiet al. Glu, Jyenn 1 postsynaptic No AMPAR,IP,R  mGIuR CaM buffer, Ca™ store AC, CaM, CaMKI|, CaN,Gq, I1,
(2003) MAPK, MEK, MKF, PKA, PKC,
PLA,, PLC, PP1, PP2A, Raf,
Ras
LTP Kitagawa et al, Ca*, 1 postsynaptic No GABAR GABAR CaM buffer AC, CaM CaMKIF, cAMR CaN
(2009) GABAR DARPP32, PDE1, PDE4, PKA,
PP1
LTP Kubotaand Bower  Ca™ 1 spins-head No AMPAR No CaM buffer, Ca™ transport AC, CaM, CaMKII5, cAMP, CaN,
(1999) 11, MAPK, PDE, PKA, PP1, Ras
LTP Kétter (1994) Ca'*, DA 1 postsynaptic No No No Buffer AC, CaMKII, cAMP,CaN,
DARFP, MAP2, PDE, PKA, PP1
LTP Lindskog etd. Ca*, DA 1 spine No No DR CaM buffer AC, CaM CaMKI|, CaN,
(2006) DARPP32, PDE1, PDE4, PKA,
PP1,PP2A
LTP Lisman (1989) Ca'* 1 postsynaptic No No No CaM buffer AC, CaM, CaMKII, cAMF, CaN,
11, PDE, PKA, FP1
TP Smolen etal. Céa*, cAMR 1 nucleus, 1 somatic, 1 No No No Buffer CaMKlI, CaMKIV, MAPK, PKA,
(2006) L synaptic gene expression
LTP  Smolen (2007) Ca* 1-6 synapses No No No Buffer CaMKIl, CaMKIV, MAPK, PKA,
@ene expression
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Summary 2

« There are multiple forms of plasticity and plasticity is a complex

phenomenon
» This can explain the multitude of existing models
« (Calcium is the fundamental element that triggers plasticity

* In principle, all the models could work with large networks of multi-

compartmental models of single neurons

» Calcium based models are the most suitable since they are close to the
biophysics of the synapses but remain relatively simple compared to the

subcellular models

=PrL
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A calcium-based plasticity model for predicting
long-term potentiation and depression in the
neocortex
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Chindemi et al., 2022

: . . a b
« SSCx microcircuit (Markram et al., -
2015) L2|
| ;
- Connections between L5_TTPCs ] B
» Excitatory synapses are made L4
principally on dendritic spines :
& Probability of
: s vesicle release
« Calcium-based model (s
= : Ca o AMPA
. . 4 Va :it;:::\o ° o s D'aplo\r ”
» Calcium enters via VDCC and : Tf* it
NMDAR TN e
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Chindemi et al., 2022 c e

11111 I b 1L 01 1

« Ca?+ decays exponentially after the Trial 1
0.50 i
. e L 2 Trial 1
INnput _ L ' = |
3 Trial 2 i’1
~ 0.50 & -
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Chindemi et al., 2022
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A of free [Ca?*];

d 7 U
E[Caz-*-]i =|(Inmpar + Ivpee) F x| e

(1)

where [Ca?T]; is the free calcium concentration in the spine head,

Invpar is the calcium component of the NMDAR-mediated
current, Iypcc is the VDCC-mediated calcium current, # is the
fraction of free (non buffered) calcium, F is the Faraday constant,
X is the spine volume, [Ca2T](®) is the intracellular calcium
concentration at rest, and 7¢, is the time constant of free calcium
clearance.
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Chindemi et al., 2022

* Introduced a longer calcium integration

time constants to explain plasticity (c*)

» |t could arise from the interplay of fast

s
: . 2
and a slow buffers in the spine head, =
o . 5 N
involving for example calmodulin =2 0 : : : .

« To model persistent changes, the 5 fJ
“synaptic efficacy”, p, is driven by the 0.0k . 1 - L . . .

integrated calcium concentration, and o %?[ f
exhibiting bistable dynamics 0.0 ks = L .

t t 1
0 250 500 750 0 250 500 750
Time (ms) Time (ms)
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Chindemi et al., 2022

ic* —_ C_+ <[Ca2+]i _ [Ca2+]i(0)>,

*

where 7, is the integration time constant.

At t=0, c*=0

=PrL

(2)
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Chindemi et al-- 2022 Dynamics of the synaptic efficacy

in the absence of pre- and postsynaptic activity
- Two stable state: 0 and 1

=P = (7P =pN05—p)+y,(1 - PIO[c" — b,] — yapOc” — 9d]) /T,
(3)

where 7 is the time constant of convergence of the synaptic
efficacy, p = 0.5 is the unstable fixed point separating the basins of
attraction of the two stable states (depressed at p=0 and
potentiated at p =1), © is the Heaviside function, 6; and 6, are
the depression and potentiation thresholds, and y; and y,, are the
depression and potentiation rates, respectively.

=PrL
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Chindemi et al., 2022

theta_d < c* <theta_p

-

d | g |
P = (—p(l —p)N0.5—p) +

where 7 is the time constant of convergence of the synaptic
efficacy, p = 0.5 is the unstable fixed point separating the basins of
attraction of the two stable states (depressed at p=0 and
potentiated at p =1), © is the Heaviside function, 6; and 6, are
the depression and potentiation thresholds, and y; and y,, are the
depression and potentiation rates, respectively.

=PrL
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Chindemi et al., 2022
c* > theta_p

-

dip = (—p(l — p)0.5 = p) Hy,(1 — p)|®[6* - 94 — YaPPIc™ — 6d]> /T,

t
(3)
where 7 is the time constant of convergence of the synaptic
efficacy, p = 0.5 is the unstable fixed point separating the basins of
attraction of the two stable states (depressed at p=0 and
potentiated at p =1), © is the Heaviside function, 6; and 6, are

the depression and potentiation thresholds, and y; and y,, are the
depression and potentiation rates, respectively.
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To account for all these effects, the synaptic efficacy
p is dynamically converted into a release probability, Usg, and

AMPAR conductance, Gypar by low-pass filtering as follows

d U — U
AU = sE SE
dt SF T

change (4)
= d
Use = Ug +p(t) - (Ug‘z) - U(stliz)>

ic . GAMPAR B GAMPAR
dt AMPAR —
T change (5)

= ~(d) - ~(p) ~(d)
Gampar = Gampar + P(1) - (GAMPAR - GAMPAR)’

where U(S%), Ugg, GfA‘dKAP AR Gfﬁdp AR are constants parameterizing a

linear conversion of the depressed (d) and potentiated (p) states
to release probability Usz and AMPAR conductance Gyypag. For
simplicity we assumed that these two synaptic variables evolve
together by assigning the filtering time constants to be identical

( Tchange) .
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« The model uses a postsynaptic mechanism to - ‘ b
change presynaptic release probability :

« This could be interpreted as having a o
retrograde messanger (e.gQ. L3 '*
endocannabinoids) | B :

« Change of (presynaptic) release probability

Pre-synaptic

and (postsynaptic) AMPAR conductance have 5 . Probability of

vesicle release

. 2 : Synaptic
the same time course 5| B vesicls
g [ oot , S
« The relative contribution of the two Z | VD‘;;%
mechanisms may be adjusted using a different N g

set of parameters

L6

=PrL



Chindemi et al., 2022

a b c
1.4
F =40 Hz 20ms
At=5ms = 1.3
s T 122
L5 E @
ry g 112
. T1.0f 1 og
= presynaptic cell = J
postsynaptic cell a s § ‘ g 0.9 w
synapses g A s Daseline L .
% 05F long term 0.8
inducti
& L ] : . e 0.7
-10 0 10 20 30 40
Time (min)
e f
At=5ms At=—10ms Frequency = 10 Hz
1.6 —4— insiico 14l in silico in silico
in vitro ' in vitro ! 121 in vitro
214r e o 1.1f
E § 12r g | A
o o Q1.0
%] |
&' KT} £ 10——¥ & .| Y
09
1oy 0.8 081
1 1 1 1 1 L 1 1 1
0 20 40 0 20 40 -50 -25 0 25 50
Frequency (Hz) Frequency (Hz) At (ms)

=PrL



Chindemi et al., 2022

g h i
05 mVv S0
— pre
post
L2/3 Frequency = 50 Hz 20 ms 40
At=10ms N
s T
L5 E 10} >30F
© ¢
3 2
presynaptic coll :5. g20F
postsynaptic cell £05F ‘baseline (T
B : long term 10
YL) induction
w 1 1 1 1 1 1
-10 0 10 20 30 40 50
Time (min)
J K
At=10ms At=—10ms
13 In sifco In siico
in vitro (L23) 12F
12+
o kel
B o
o 111 & 1.0
w (7]
o a
w1i10H L
¢ 08
09
0 20 40 0 20 40
Frequency (H2) Frequency (Hz)

=PrL

129

. - .. .
1 1 1 J

-25 0
At (ms)

Frequency =50 Hz At=10ms

5r In sllico
ak In vitro
o
B3r
o
& 2r
w
1
Ok 1 1 1
0 5 10 15
EPSP rise time (ms)



Chindemi et al., 2022

L2/3

presynaptic cell
postsynaptic cell
synapses

=PrL

pret h osmv|_
pos 20 ms
—~ Fre uen 20 Hz
> At = 3 cy
E
g,
a baseline
£
@ long term
o induction
2 0t ! ] 1 I 1
w -10 0 10 20 30 40
Time (min)
8- At=10ms d Frequen
st T Y
60} —- PLFit
_(% 15k _(% 550 data
e © 10~ % outlier
1
o o 2
n [ H
o o s
wiqor—-—--- w 5
in silico X
in vitro R a2 !
()] =1 1 1
20 0 2 4

Frequency (Hz)

Initial EPSP (mV)

EPSP ratio

ore e 05mVL_
’;_)\o - Frequenc.y 02Hz S
> At =
=
P Baseline
8o Long term
% Induction
£
o
&
0 I 1 I
i 0 20 40
Time (min)
At=-15ms g Fr uency 0 2 Hz
20p “Be-
S H data
1.5 9150 ' % outlier
o 50 m
0 I
a
1.0——%——- W asH
RAPEs o0 2%, 0 oo ¢
0.0ph ] |
0.2 0 2 4
Frequency (Hz) Initial EPSP (mV)

55



Chindemi et al., 2022

a

b C
50 -
Frequency = 40 Hz 20 ms __40
= At=5ms f
> 06f ) =
LS E baseline > 30F
2 " long term g
4+ i i
prasynaptic cell = indugiion T 20k
postsynaptic cell g- lg
synapses @ 02
% 10
& 00 e 1 1 1 1 1
-10 0 10 20 30 40 -50
Time (min)
d e
At =5ms At= -10ms
2+
S
14} high Ca?*
2 £
S low Caz + E 1.2+
g 121 high Ca2* e
i b, :
1.0——-=
1 1 1 08 ul 1 1
0 20 40 0 20 40
Frequency (Hz) Frequency (Hz)

EPSP ratio

14
1.3
122
s
11 o
1.00
w

0.9
0.8

=0 I A 0.7

-25 0 25 50

Af (ms)
Frequency = 40 Hz
I
141 |
42 - kO
high Ca®*
1.0
1 1 1 1
-50 -25 0 25 50
At (ms)

56



Summary 3

« Chindemi’'s model preserves some biophysical details

« Variables that chance with different time constants represent the different

cascade of events acting at different scales
« The model is suitable for biophysically-detailed neuronal networks

« The simulation cost is still relatively high considering the fitting and the

simulations of several minutes typical of long-term plasticity experiments
« The same model can be generalized to other connections

* The different behaviors of other connections arise from the differences in the

pathways and do not require model reparameterization
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Lecture Summary

« Different experimental protocols, different mechanisms and a multitude of

models

» Despite this complexity, some ideas are recurrent (e.g., Hebbian rules,

bistable variables, depression and potentiation thresholds...)

« (Calcium based models are a preferred choice to work with biophysical

network models

» The use of these models is still relatively limited due to the computational

cost
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What you have learnt

« Different types of long-term plasticity, experimental methods, molecular

mechanisms
« Different types of modeling approaches

» General understanding of the different equations. No need to memorize the

details.
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